These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Achieving Long-Term Stability of Partial Nitrification and Autotrophic Denitrification in an MABR via Sulfide Dosing.
    Author: Han YL, Wu ZC, Rittmann BE, Zhao HP.
    Journal: Environ Sci Technol; 2024 Jul 16; 58(28):12532-12541. PubMed ID: 38940696.
    Abstract:
    While partial nitrification (PN) has the potential to reduce energy for aeration, it has proven to be unstable when treating low-strength wastewater. This study introduces an innovative combined strategy incorporating a low rate of oxygen supply, pH control, and sulfide addition to selectively inhibit nitrite-oxidizing bacteria (NOB). This strategy led to a stable PN in a laboratory-scale membrane aerated biofilm reactor (MABR). Over a period of 260 days, the nitrite accumulation ratio exceeded 60% when treating synthetic sewage containing 50 mg NH4+-N/L. Through in situ activity testing and high-throughput sequencing, the combined strategy led to low levels of nitrite-oxidation activity (<5.5 mg N/m2 h), Nitrospira species (relative abundance <1%), and transcription of nitrite-oxidation genes (undetectable). The addition of sulfide led to simultaneous PN and autotrophic denitrification in the single-stage MABR, resulting in over 60% total inorganic nitrogen removal. Sulfur-based autotrophic denitrification consumed nitrite and inhibited NOB conversion of nitrite to nitrate. The combined strategy has potential to be applied in large-scale sewage treatment and deserves further exploration.
    [Abstract] [Full Text] [Related] [New Search]