These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improvement of in vivo iron bioavailability using mung bean peptide-ferrous chelate. Author: Ding X, Xu M, Li H, Li X, Li M. Journal: Food Res Int; 2024 Aug; 190():114602. PubMed ID: 38945571. Abstract: There is an increasing amount of research into the development of a third generation of iron supplementation using peptide-iron chelates. Peptides isolated from mung bean were chelated with ferrous iron (MBP-Fe) and tested as a supplement in mice suffering from iron-deficiency anemia (IDA). Mice were randomly divided into seven groups: a group fed the normal diet, the IDA model group, and IDA groups treated with inorganic iron (FeSO4), organic iron (ferrous bisglycinate, Gly-Fe), low-dose MBP-Fe(L-MBP-Fe), high-dose MBP-Fe(H-MBP-Fe), and MBP mixed with FeSO4 (MBP/Fe). The different iron supplements were fed for 28 days via intragastric administration. The results showed that MBP-Fe and MBP/Fe had ameliorative effects, restoring hemoglobin (HGB), red blood cell (RBC), hematocrit (HCT), and serum iron (SI) levels as well as total iron binding capacity (TIBC) and body weight gain of the IDA mice to normal levels. Compared to the inorganic (FeSO4) and organic (Gly-Fe) iron treatments, the spleen coefficient and damage to liver and spleen tissues were significantly lower in the H-MBP-Fe and MBP/Fe mixture groups, with reparative effects on jejunal tissue. Gene expression analysis of the iron transporters Dmt 1 (Divalent metal transporter 1), Fpn 1 (Ferroportin 1), and Dcytb (Duodenal cytochrome b) indicated that MBP promoted iron uptake. These findings suggest that mung bean peptide-ferrous chelate has potential as a peptide-based dietary supplement for treating iron deficiency.[Abstract] [Full Text] [Related] [New Search]