These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functionalized solid lipid nanoparticles combining docetaxel and erlotinib synergize the anticancer efficacy against triple-negative breast cancer.
    Author: Chaudhuri A, Naveen Kumar D, Kumar D, Kumar Agrawal A.
    Journal: Eur J Pharm Biopharm; 2024 Aug; 201():114386. PubMed ID: 38950717.
    Abstract:
    The goal of the study was to fabricate folic acid functionalized docetaxel (DOC)/erlotinib (ERL)-loaded solid lipid nanoparticles (SLNs) to synergistically increase the anticancer activity against triple-negative breast cancer. DOC/ERL-SLNs were prepared by the high shear homogenization - ultrasound dispersion method (0.1 % w/v for DOC, and 0.3 %w/v for ERL) and optimized using Plackett Burman Design (PBD) followed by Box Behnken Design (BBD). The optimized SLNs demonstrated particle size < 200 nm, PDI < 0.35, and negative zeta potential with entrapment and loading efficiency of ∼80 and ∼4 %, respectively. The SLNs and folic acid functionalized SLNs (FA-SLNs) showed sustained release for both drugs, followed by Higuchi and Korsemeyer-Peppas drug release models, respectively. Further, the in vitro pH-stat lipolysis model demonstrated an approximately 3-fold increase in the bioaccessibility of drugs from SLNs compared to suspension. The TEM images revealed the spherical morphology of the SLNs. DOC/ERL loaded SLNs showed dose- and time-dependent cytotoxicity and exhibited a synergism at a molar ratio of 1:3 in TNBC with a combination index of 0.35 and 0.37, respectively. FA-DOC/ERL-SLNs showed enhanced anticancer activity as evidenced by MMP and ROS assay and further inhibited the colony-forming ability and the migration capacity of TNBC cells. Conclusively, the study has shown that SLNs are encouraging systems to improve the pharmaceutical attributes of poorly bioavailable drugs.
    [Abstract] [Full Text] [Related] [New Search]