These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative pharmacodynamics and dose optimization of liposomal amphotericin B against Candida species in an in vitro pharmacokinetic/pharmacodynamic model.
    Author: Beredaki M-I, Arendrup MC, Pournaras S, Meletiadis J.
    Journal: Antimicrob Agents Chemother; 2024 Aug 07; 68(8):e0022524. PubMed ID: 38958455.
    Abstract:
    As comparative pharmacokinetic/pharmacodynamic (PK/PD) studies of liposomal amphotericin B (L-AMB) against Candida spp. are lacking, we explored L-AMB pharmacodynamics against different Candida species in an in vitro PK/PD dilution model. Eight Candida glabrata, Candida parapsilosis, and Candida krusei isolates (EUCAST/CLSI AMB MIC 0.125-1 mg/L) were studied in the in vitro PK/PD model simulating L-AMB Cmax = 0.25-64 mg/L and t1/2 = 9 h. The model was validated with one susceptible and one resistant Candida albicans isolate. The Cmax/MIC-log10CFU/mL reduction from the initial inoculum was analyzed with the Emax model, and Monte Carlo analysis was performed for the standard (3 mg/kg with Cmax = 21.87 ± 12.47 mg/L) and higher (5 mg/kg with Cmax = 83 ± 35.2 mg/L) L-AMB dose. A ≥1.5 log10CFU/mL reduction was found at L-AMB Cmax = 8 mg/L against C. albicans, C. parapsilosis, and C. krusei isolates (MIC 0.25-0.5 mg/L) whereas L-AMB Cmax ≥ 32 mg/L was required for C. glabrata isolates. The in vitro PK/PD relationship followed a sigmoidal pattern (R2 ≥ 0.85) with a mean Cmax/MIC required for stasis of 2.1 for C. albicans (close to the in vivo stasis), 24/17 (EUCAST/CLSI) for C. glabrata, 8 for C. parapsilosis, and 10 for C. krusei. The probability of target attainment was ≥99% for C. albicans wild-type (WT) isolates with 3 mg/kg and for wild-type isolates of the other species with 5 mg/kg. L-AMB was four- to eightfold less active against the included non-C. albicans species than C. albicans. A standard 3-mg/kg dose is pharmacodynamically sufficient for C. albicans whereas our data suggest that 5 mg/kg may be recommendable for the included non-C. albicans species.
    [Abstract] [Full Text] [Related] [New Search]