These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Equations for estimating binary mixture toxicity: 3-methyl-2-butanone with a series of electrophiles. Author: Dawson DA, Schultz TW. Journal: PLoS One; 2024; 19(7):e0306382. PubMed ID: 38959231. Abstract: Mixture toxicity was determined for 32 binary combinations. One chemical was the non-reactive, non-polar narcotic 3-methyl-2-butanone (always chemical A) and the other was a potentially reactive electrophile (chemical B). Bioluminescence inhibition in Allovibrio fischeri was measured at 15-, 30-, and 45-minutes of exposure for A, B, and the mixture (MX). Concentration-response curves (CRCs) were developed for each chemical and used to develop predicted CRCs for the concentration addition (CA) and independent action (IA) mixture toxicity models. Also, MX CRCs were generated and compared with model predictions using the 45-minute data. Classification of observed mixture toxicity used three specific criteria: 1) predicted IA EC50 vs. CA EC50 values at 45-minutes, 2) consistency of 45-minute MX CRC fit to IA, CA, or otherwise at three effect levels (EC25, EC50 and EC75), and 3) the known/suspected mechanism of toxicity for chemical B. Mixture toxicity was then classified into one of seven groupings. As a result of the predicted IA EC50 being more toxic than the predicted CA EC50, IA represented the greater toxic hazard. For this reason, non-sham MXs having toxicity consistent with CA were classified as being "coincident" with CA rather than mechanistically-consistent with CA. Multiple linear regression analyses were performed to develop equations that can be used to estimate the toxicity of other 3M2B-containing binary mixtures. These equations were developed from the data for both IA and CA, at each exposure duration and effect level. Each equation had a coefficient of determination (r2) above 0.950 and a variance inflation factor <1.2. This approach can potentially reduce the need for mixture testing and is amenable to other model systems and to assays that evaluate toxicity at low effect levels.[Abstract] [Full Text] [Related] [New Search]