These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exosomal miR-130b-3p suppresses metastasis of non-small cell lung cancer cells by targeting DEPDC1 via TGF-β signaling pathway.
    Author: Lv M, Li X, Zheng C, Tian W, Yang H, Yin Z, Zhou B.
    Journal: Int J Biol Macromol; 2024 Aug; 275(Pt 1):133594. PubMed ID: 38960258.
    Abstract:
    Exosomal miRNAs have vital functions in mediating intercellular communication as well as tumor occurrence and development. Thus, our research was aimed at exploring the regulatory mechanisms of exosomal miR-130b-3p/DEP domain containing 1 (DEPDC1)/transforming growth factor-β (TGF-β) signaling pathway in non-small cell lung cancer (NSCLC). Here we indicated that exosomal miR-130b-3p expression decreased in the serum of NSCLC patients, and it was of significant diagnostic value. Moreover, elevated miR-130b-3p levels suppressed the proliferation and migration of NSCLC cells, and enhanced their apoptosis. Conversely, miR-130b-3p down-regulation led to an opposite effect. As the upstream of DEPDC1, miR-130b-3p directly bound to 3'UTR in DEPDC1 to regulate its expression. DEPDC1 levels affected the proliferation, migration, and apoptosis of NSCLC cells via TGF-β signaling pathway. Exosomal miR-130b-3p was highly expressed in BEAS-2B cells, besides, BEAS-2B cells transferred exosomal miR-130b-3p to NSCLC cells. Finally, exosomal miR-130b-3p suppressed NSCLC cell growth and migration, promoted their apoptosis via TGF-β signaling pathway by decreasing DEPDC1 expression, and suppressed epithelial-mesenchymal transition (EMT) in NSCLC cells. In conclusion, exosomal miR-130b-3p has the potential to be a predictive biomarker for NSCLC, thereby stimulating the exploration of diagnostic and therapeutic approaches targeting NSCLC.
    [Abstract] [Full Text] [Related] [New Search]