These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Construction of an ideotype root system architecture of subsurface flow constructed wetland macrophytes by vertical spatial stress: strengthening of rhizosphere effects and determination of appropriate substrate depth.
    Author: Zheng J, Guo D, Zhang J, Zhang T, Yang L, Li B, Lan J, Ren Y.
    Journal: Environ Res; 2024 Oct 15; 259():119523. PubMed ID: 38960352.
    Abstract:
    Strengthening rhizosphere effects to enhance pollutant removal is a hotspot of constructed wetlands (CWs) research in recent years, and improving the root traits and metabolic capacity of macrophytes is crucial for strengthening rhizosphere effects. In the field experiment, two types of subsurface flow (SSF) CWs (CW10 and CW20, with substrate depths of 10 and 20 cm, respectively) under the vertical spatial stress of roots (VSSR) and two types of non-VSSR SSF CWs (CW40 and CW60) were adopted with Typha orientalis as cultivated plants to investigate the variability of root development, metabolism, and pollutant removal at different substrate depths. VSSR induced substantial redundant root development, which significantly increased root-shoot ratio, fine and lateral root biomass, root porosity, and root activity, with lateral and fine root biomass of CW20 reaching 409.17 and 237.42 g/m2, respectively, which were 3.18 and 5.28 times those of CW60. The radical oxygen loss (ROL) and dissolved organic carbon (DOC) levels of CW20 single plant were 1.36 and 4.57 times higher than those of CW60, respectively, and more types of root exudates were determined (e.g., aldehydes, ketones and amides). More aerobic heterotrophs (e.g., Massilia, Planomicrobium), nitrification bacteria (e.g., Ellin6067, Nitrospira), aerobic denitrification bacteria (e.g., Bacillu, Chryseobacterium, Pseudomonas) and denitrification phosphorus accumulating organisms (e.g., Flavobacterium) were enriched in the rhizosphere of CW20. This changed the main transformation pathways of pollutants and enhanced the removal of pollutants, with the COD, TN and TP average removal rates of CW20 increasing by 9.99%, 13.28% and 8.92%, respectively, compared with CW60. The ideotype root system architecture CW (RSACW; CW20) constructed in this study, which consists of a large number of fine and lateral roots, can stimulate more efficient rhizosphere effects stably and continuously.
    [Abstract] [Full Text] [Related] [New Search]