These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Conductivity-mediated in situ electrochemical reconstruction of CuOx for nitrate reduction to ammonia. Author: Liang H, Zhang Y, Zhang X, Zhao E, Xue W, Nie E, Chen J, Zuo S, Zhou M. Journal: Nanoscale; 2024 Jul 25; 16(29):13895-13904. PubMed ID: 38973493. Abstract: The electrocatalytic nitrate reduction reaction (NO3RR) is an ideal NH3 synthesis route with ease of operation, high energy efficiency, and low environmental detriment. Electrocatalytic cathodes play a dominant role in the NO3RR. Herein, we constructed a carbon fiber paper-supported CuOx nanoarray catalyst (CP/CuOx) by an in situ electrochemical reconstruction method for NO3--to-NH3 conversion. A series of characterization techniques, such as X-ray diffraction (XRD) and in situ Raman spectroscopy, unveil that CP/CuOx is a polycrystalline-faceted composite copper nanocatalyst with a valence composition containing Cu0, Cu+ and Cu2+. CP/CuOx shows more efficient NO3--to-NH3 conversion than CP/Cu and CP/Cu2O, which indicates that the coexistence of various Cu valence states could play a dominant role. CP/CuOx with a suitable Cu2+ content obtained by adjusting the conductivity during the in situ electrochemical reconstruction process exhibited more than 90% faradaic efficiencies for the NO3RR in a broad range of -0.3 to -1.0 V vs. RHE, 28.65 mg cm-2 h-1 peak ammonia yield, and stable NO3RR efficiencies for ten cycles. These findings suggest that CP/CuOx with suitable copper valence states obtained by fine-tuning the conductivity of the electrochemical reconstruction may provide a competitive cathode catalyst for achieving excellent activity and selectivity of NO3--to-NH3 conversion.[Abstract] [Full Text] [Related] [New Search]