These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular Engineering of Hydrogen-Bonded Organic Framework for Enhanced Nitrate Electroreduction to Ammonia. Author: Zhai P, Wang C, Li Y, Jin D, Shang B, Chang Y, Liu W, Gao J, Hou J. Journal: Nano Lett; 2024 Jul 17; 24(28):8687-8695. PubMed ID: 38973752. Abstract: Electrocatalytic nitrate reduction is an efficient way to produce ammonia sustainably. Herein, we rationally designed a copper metalloporphyrin-based hydrogen-bonded organic framework (HOF-Cu) through molecular engineering strategies for electrochemical nitrate reduction. As a result, the state-of-the-art HOF-Cu catalyst exhibits high NH3 Faradaic efficiency of 93.8%, and the NH3 production rate achieves a superior activity of 0.65 mmol h-1 cm-2. The in situ electrochemical spectroscopic combined with density functional theory calculations reveals that the dispersed Cu promotes the adsorption of NO3- and the mechanism is followed by deoxidation of NO3- to *NO and accompanied by deep hydrogenation. The generated *H participates in the deep hydrogenation of intermediate with fast kinetics as revealed by operando electrochemical impedance spectroscopy, and the competing hydrogen evolution reaction is suppressed. This research provides a promising approach to the conversion of nitrate to ammonia, maintaining the nitrogen balance in the atmosphere.[Abstract] [Full Text] [Related] [New Search]