These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional and structural characterization of a thermostable flavin reductase from Geobacillus mahadii Geo-05.
    Author: Husain NAC, Jamaluddin H, Jonet MA.
    Journal: Int J Biol Macromol; 2024 Aug; 275(Pt 2):133721. PubMed ID: 38986972.
    Abstract:
    Flavin reductases play a vital role in catalyzing the reduction of flavin through NADH or NADPH oxidation. The gene encoding flavin reductase from the thermophilic bacterium Geobacillus mahadii Geo-05 (GMHpaC) was cloned, overexpressed in Escherichia coli BL21 (DE3) pLysS, and purified to homogeneity. The purified recombinant GMHpaC (Class II) contains chromogenic cofactors, evidenced by maximal absorbance peaks at 370 nm and 460 nm. GMHpaC stands out as the most thermostable and pH-tolerant flavin reductase reported to date, retaining up to 95 % catalytic activity after incubation at 70 °C for 30 min and maintaining over 80 % activity within a pH range of 2-12 for 30 min. Furthermore, GMHpaC's catalytic activity increases by 52 % with FMN as a co-factor compared to FAD and riboflavin. GMHpaC, coupled with 4-hydroxyphenylacetate-3-monooxygenase (GMHpaB) from G. mahadii Geo-05, enhances the hydroxylation of 4-hydroxyphenylacetate (HPA) by 85 %. The modeled structure of GMHpaC reveals relatively conserved flavin and NADH binding sites. Modeling and docking studies shed light on structural features and amino acid substitutions that determine GMHpaC's co-factor specificity. The remarkable thermostability, high catalytic activity, and general stability exhibited by GMHpaC position it as a promising enzyme candidate for various industrial applications.
    [Abstract] [Full Text] [Related] [New Search]