These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Renal nerves and hypertension: an update.
    Author: Katholi RE.
    Journal: Fed Proc; 1985 Oct; 44(13):2846-50. PubMed ID: 3899731.
    Abstract:
    Increased efferent renal sympathetic nerve activity could facilitate the development of hypertension by shifting the arterial pressure-renal sodium excretion curve to the right. Accordingly, interruption of the renal nerves should prevent the development of hypertension in animal models in which increased sympathetic nervous system activity has been implicated. Renal denervation delays the development of hypertension and results in greater sodium excretion in the Okamoto and New Zealand spontaneously hypertensive rat and in the deoxycorticosterone acetate-salt-treated rat, which suggests that these responses result from, at least in part, loss of efferent renal nerve activity. Similar sympathetically mediated renal vasoconstriction has been implicated in the pathogenesis of early essential hypertension in humans. The efferent renal sympathetic nerves play a diminishing role once hypertension is established in these models. Renal denervation in established one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertension in the rat and chronic coarctation in the dog results in an attenuation of the hypertension. The depressor effect of renal denervation in these models is not caused by changes in renin activity or sodium excretion but is associated with decreased sympathoadrenal activity. These findings suggest that the afferent renal nerves contribute to the pathogenesis of renovascular hypertension by enhancing the activity of the sympathetic nervous system. Interruption of afferent renal fibers also appears to be the mechanism by which renal denervation prevents or reverses the normal increase in arterial pressure seen after aortic baroreceptor deafferentation in the rat.
    [Abstract] [Full Text] [Related] [New Search]