These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Across Interfacial Li+ Conduction Accelerated by a Single-Ion Conducting Polymer in Ceramic-Rich Composite Electrolytes for Solid-State Batteries.
    Author: Meng N, Lian F, Wu L, Wang Y, Qiu J.
    Journal: ACS Appl Mater Interfaces; 2024 Aug 07; 16(31):41487-41494. PubMed ID: 39001811.
    Abstract:
    Composite electrolytes have been accepted as the most promising species for solid-state batteries, exhibiting the synergistic advantages of solid polymer electrolytes (SPEs) and solid ceramic electrolytes (SCEs). Unfortunately, the interrupted Li+ conduction across the SPE and SCE interface hinders the ionic conductivity improvement of composite electrolytes. In our study on a ceramic-rich composite electrolyte (CRCE) membrane composed of borate polyanion-based lithiated poly(vinyl formal) (LiPVFM) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) particles, it is found that the strong interaction between the polyanions in LiPVFM and LATP particles results in a uniform distribution of ceramic particles at a high proportion of 50 wt % and good robustness of the electrolyte membrane with a Young's modulus of 9.20 GPa. More importantly, ab initio molecular dynamics simulation and experimental results demonstrate that Li+ conduction across the SPE and SCE interface is induced by the polyanion-based polymer due to its high lithium-ion transference number and similar Li+ diffusion coefficient with the SCE. Therefore, the unblocked Li+ conduction among ceramic particles dominates in the CRCE membrane with a high ionic conductivity of 6.60 × 10-4 S cm-1 at 25 °C, a lithium-ion transference number of 0.84, and a wide electrochemical stable window of 5.0 V (vs Li/Li+). Consequently, the high nickel ternary cathode LiNi0.8Mn0.1Co0.1O2-based batteries with CRCE deliver a high-rate capability of 135.08 mAh g-1 at 1.0 C and a prolonged cycle life of 100 cycles at 0.2 C between 3.0 and 4.3 V. The polyanion-induced Li+ conduction across the interface sheds new light on solving composite electrolyte problems for solid-state batteries.
    [Abstract] [Full Text] [Related] [New Search]