These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of gully influencing factors and susceptibility using remote sensing-based frequency ratio method in Sunshui River Basin, Southwest China.
    Author: Laraib S, Xiong D, Zhao D, Shrestha BR, Liu L, Qin X, Xie X, Rai DK, Zhang W.
    Journal: Environ Monit Assess; 2024 Jul 13; 196(8):731. PubMed ID: 39001905.
    Abstract:
    Gully erosion is a serious global environmental problem associated with land degradation and ecosystem security. Examining the influencing factors of gullies and determining susceptibility hold significance in environmental sustainability. The study evaluates the spatial distribution, influencing factors, and susceptibility of gullies in the Sunshui River Basin in Sichuan Province, Southwest China. The frequency ratio method supported by satellite images and the gully inventory dataset (1614 gully head points) with different influencing factors were applied to assess the distribution and susceptibility of gullies. Additionally, gully head points were grouped into a training set (70%, 1130 points) and a test set (30%, 484 points). Spatial distribution results indicated that most gullies are located in the middle and upper part of the basin, characterized by moderate elevation (2100-3300 m), steep slopes (11.63-27.34°), abandoned farmland, and Cambisols soil, and fewer gullies are located in lower part characterized by lower elevation, gentle slopes, and low vegetation coverage. Land use and land cover influence on susceptibility is significantly greater than other factors with a prediction rate of 33.9, especially farmland abandonment, while the occurrence of gullies is also more often on southwest-orientated slopes. Gully susceptibility highlighted that the study area affected by the very low, low, moderate, high, and very high susceptibilities to these gullies covered an area of about 16%, 23%, 32%, 26%, and 3% of the total basin respectively, which indicates 61% of the study area is susceptible to gully erosion. Moderate to high susceptibility is situated in the upper and middle part, consistent with the spatial distribution of gullies in the basin, and very high susceptibility (3%) is distributed in both the lower and upper parts of the basin. These results have important implications for soil loss control, land planning, and integrated watershed management in the mountainous areas of Southwest China.
    [Abstract] [Full Text] [Related] [New Search]