These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preoperative Prediction of Muscle Invasiveness in Bladder Cancer: The Role of 3D Volumetric Radiomics Using Diffusion-Weighted MRI, the VI-RADS Score, or a Combination of Both.
    Author: Şam Özdemir M, Azamat S, Özdemir H, Keskin ET, Savun M, Şimşek A, Yardımcı AH.
    Journal: Ann Surg Oncol; 2024 Sep; 31(9):5845-5850. PubMed ID: 39003377.
    Abstract:
    BACKGROUND: Bladder cancer treatment decisions hinge on detecting muscle invasion. The 2018 "Vesical Imaging Reporting and Data System" (VI-RADS) standardizes multiparametric MRI (mp-MRI) use. Radiomics, an analysis framework, provides more insightful information than conventional methods. PURPOSE: To determine how well MIBC (Muscle Invasive Bladder Cancer) and NMIBC (Non-Muscle Invasive Bladder Cancer) can be distinguished using mp-MRI radiomics features. METHODS: We conducted a study with 73 bladder cancer patients diagnosed pathologically, who underwent preoperative mp-MRI from January 2020 to July 2022. Utilizing 3D Slicer (version 4.8.1) and Pyradiomics, we manually extracted radiomic features from apparent diffusion coefficient (ADC) maps created from diffusion-weighted imaging. The LASSO approach identified optimal features, and we addressed sample imbalance using SMOTE. We developed a classification model using textural features alone or combined with VI-RADS, employing a random forest classifier with 10-fold cross-validation. Diagnostic performance was assessed using the area under the ROC curve analysis. RESULTS: Among 73 patients (63 men, 10 women; median age: 63 years), 41 had muscle-invasive and 32 had superficial bladder cancer. Muscle invasion was observed in 25 of 41 patients with VI-RADS 4 and 5 scores and 12 of 32 patients with VI-RADS 1, 2, and 3 scores (accuracy: 77.5%, sensitivity: 67.7%, specificity: 88.8%). The combined VI-RADS score and radiomics model (AUC = 0.92 ± 0.12) outperformed the single radiomics model using ADC MRI (AUC = 0.83 ± 0.22 with 10-fold cross-validation) in this dataset. CONCLUSION: Before undergoing surgery, bladder cancer invasion in muscle might potentially be predicted using a radiomics signature based on mp-MRI.
    [Abstract] [Full Text] [Related] [New Search]