These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exploring allocryptopine as a neuroprotective agent against oxidative stress-induced neural apoptosis via Akt/GSK-3β/tau pathway modulation. Author: Aslim B, Nigdelioglu Dolanbay S, Baran SS. Journal: Comput Biol Chem; 2024 Oct; 112():108144. PubMed ID: 39004026. Abstract: Alzheimer's disease (AD) is characterized by neuronal loss due to hyperphosphorylated proteins induced by oxidative stress. AD remains a formidable challenge in the medical field, as current treatments focusing on single biomarkers have yielded limited success. Hence, there's a burgeoning interest in investigating novel compounds that can target mechanisms, offering alternative therapeutic approaches. The aim of this study is to investigate the effects of allocryptopine, an isoquinoline alkaloid, on mechanisms related to AD in order to develop alternative treatment strategies. In this study, the in vitro AD cell model was obtained by inducing nerve growth factor (NGF)-differentiated PC12 (dPC12) cells to oxidative stress with H2O2, and also the effect mechanism of different allocryptopine concentrations on the in vitro AD cell model was studied. The treatments' antioxidative effects at the ROS level and their regulation of the cell cycle were assessed through flow cytometry, while their anti-apoptotic effects were evaluated using both flow cytometry and qRT-PCR. Additionally, the phosphorylation levels of Akt, GSK-3β, and tau proteins were analyzed via western blot, and the interactions between Akt, GSK-3β, CDK5 proteins, and allocryptopine were demonstrated through molecular docking. Our study's conclusive results revealed that allocryptopine effectively suppressed intracellular ROS levels, while simultaneously enhancing the Akt/GSK-3β signaling pathway by increasing p-Akt and p-GSK-3β proteins. This mechanism played a critical role in inhibiting neural cell apoptosis and preventing tau hyperphosphorylation. Moreover, allocryptopine demonstrated its ability to regulate the G1/S cell cycle progression, leading to cell cycle arrest in the G1 phase, and facilitating cellular repair mechanisms, potentially contributing to the suppression of neural apoptosis. The in silico results of allocryptopine were shown to docking with the cyclin-dependent kinase 5 (CDK 5) playing a role in tau phosphorylation Akt and GSK-3β from target proteins. Therefore, the in silico study results supported the in vitro results. The results showed that allocryptopine can protect dPC12 cells from oxidative stress-induced apoptosis and hyperphosphorylation of the tau protein by regulating the Akt/GSK-3β signaling pathway. Based on these findings, it can be suggested that allocryptopine, with its ability to target biomarkers and its significant effects on AD-associated mechanisms, holds promise as a potential candidate for drug development in the treatment of AD. Further research and clinical trials are recommended in the future.[Abstract] [Full Text] [Related] [New Search]