These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High Antifouling Performance of Weakly Hydrophilic Polymer Brushes: A Molecular Dynamics Study. Author: Yagasaki T, Matubayasi N. Journal: Langmuir; 2024 Jul 23; 40(29):15046-15058. PubMed ID: 39004900. Abstract: The antifouling performance of polymer brushes usually improves with increasing hydrophilicity of the grafted polymer. However, in some cases, less hydrophilic polymers show comparable or better antifouling performance than do more hydrophilic polymers. We investigate the mechanism of this anomalous behavior using molecular dynamics (MD) simulations of coarse-grained (CG) models of weakly and strongly hydrophilic polymers. The antifouling performance is evaluated from the potential of mean force of a model protein. The strongly hydrophilic polymer exhibits a better antifouling performance than the weakly hydrophilic polymer when the substrate of the polymer brush is repulsive. However, when the substrate is sufficiently attractive, the weakly hydrophilic polymer brush becomes more effective than the strongly hydrophilic brush in a certain range of grafting density. This is because the weakly hydrophilic polymer chains form a tightly packed layer that prevents the adsorbate molecule from contacting the substrate. We also perform all-atom (AA) MD simulations for several standard polymers to examine the correspondence with the CG polymer models. The weakly hydrophilic CG polymer is found to be similar to poly[N-(2-hydroxypropyl)methacrylamide] and poly(2-hydroxyethyl methacrylate), both of which have a hydroxyl group in a monomer unit. The strongly hydrophilic CG polymer resembles zwitterionic poly(carboxybetaine methacrylate). A discussion referring to the adsorption free energies of proteins on surfaces calculated in previous AA MD studies suggests that the higher antifouling performance of less hydrophilic polymer brushes can be realized for various combinations of protein and surface.[Abstract] [Full Text] [Related] [New Search]