These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Statistics of quantum heat in the Caldeira-Leggett model. Author: Zhang ZZ, Tan QS, Wu W. Journal: Phys Rev E; 2024 Jun; 109(6-1):064134. PubMed ID: 39021018. Abstract: Nonequilibrium fluctuation relation lies at the heart of the quantum thermodynamics. Many previous studies have demonstrated that the heat exchange between a quantum system and a thermal bath initially prepared in their own Gibbs states at different temperatures obeys the famous Jarzynski-Wójcik fluctuation theorem. However, this conclusion is obtained under the assumption of Born-Markovian approximation. In this paper, going beyond the Born-Markovian limitation, we investigate the statistics of quantum heat in an exactly non-Markovian relaxation process described by the well-known Caldeira-Leggett model. It is revealed that the Jarzynski-Wójcik fluctuation theorem breaks down in the strongly non-Markovian regime. Moreover, we find the steady-state quantum heat within the non-Markovian framework can be widely tunable by using the quantum reservoir-engineering technique. These results are sharply contrary to the common Born-Markovian predictions. Our results presented in this paper may update the understanding of the quantum thermodynamics in strongly coupled and low-temperature systems. Moreover, the controllable heat may have some potential applications in improving the performance of a quantum heat engine.[Abstract] [Full Text] [Related] [New Search]