These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A fragment of the β-glucosidase gene from the rumen fungus Neocallimastix patriciarum J11 encodes a recombinant protein that exhibits activities in β-glucosidase and β-glucanase. Author: Liu JC, Cheng HL, Lai YH, Hu CY, Chen YC. Journal: Biochem Biophys Res Commun; 2024 Nov 05; 732():150406. PubMed ID: 39032412. Abstract: Lignocellulose, the most abundant organic waste on Earth, is of economic value because it can be converted into biofuels like ethanol by enzymes such as β-glucosidase. This study involved cloning a β-glucosidase gene named JBG from the rumen fungus Neocallimastix patriciarum J11. When expressed recombinantly in Escherichia coli, the rJBG enzyme exhibited significant activity, hydrolyzing 4-nitrophenyl-β-d-glucopyranoside and cellobiose to release glucose. Surprisingly, the rJBG enzyme also showed hydrolytic activity against β-glucan, breaking it down into glucose, indicating that the rJBG enzyme possesses both β-glucosidase and β-glucanase activities, a characteristic rarely found in β-glucosidases. When the JBG gene was expressed in Saccharomyces cerevisiae and the transformants were inoculated into a medium containing β-glucan as the sole carbon source, the ethanol concentration in the culture medium increased from 0.17 g/L on the first day to 0.77 g/L on the third day, reaching 1.3 g/L on the fifth day, whereas no ethanol was detected in the yeast transformants containing the recombinant plasmid pYES-Sur under the same conditions. These results demonstrate that yeast transformants carrying the JBG gene can directly saccharify β-glucan and ferment it to produce ethanol. This gene, with its dual β-glucosidase and β-glucanase activities, simplifies and reduces the cost of the typical process of converting lignocellulose into bioethanol using enzymes and yeast.[Abstract] [Full Text] [Related] [New Search]