These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Author: Adhikari S, Joshi R, Joshi R, Kim M, Jang Y, Tufa LT, Gicha BB, Lee J, Lee D, Cho BK. Journal: Food Chem; 2024 Nov 01; 457():140486. PubMed ID: 39032478. Abstract: A gold nanogap substrate was used to measure the thiram and carbaryl residues in various fruit juices using surface-enhanced Raman scattering (SERS). The gold nanogap substrates can detect carbaryl and thiram with limits of detection of 0.13 ppb (0.13 μgkg-1) and 0.22 ppb (0.22 μgkg-1). Raw SERS data were first preprocessed to reduce noise and undesirable effects and, were later used for model creation, implementing classification, and regression analysis techniques. The partial least-squares regression models achieved the highest prediction correlation coefficient (R2) of 0.99 and the lowest root mean square of prediction value below 0.62 ppb for both pesticide-infected juice samples. Furthermore, to differentiate between juice samples contaminated by both pesticides and control (pesticide-free), logistic-regression classification models were produced and achieved the highest classification accuracies of 100% and 99% for contaminated juice containing thiram and 100% accurate results for contaminated juice containing carbaryl. This indicates that the gold nanogap surface has significant potential for achieving high sensitivity in detecting trace contaminants in food samples.[Abstract] [Full Text] [Related] [New Search]