These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Establishing an affordable solar-floating Fe2O3@A1-xRx-TiO2 photo-Fenton catalytic system through the cyclic utilization of iron waste to de-pollute textile water contamination. Author: Zenna O, Younis SA, Hamed S, Zaki T, Makki S. Journal: J Environ Manage; 2024 Aug; 366():121863. PubMed ID: 39033618. Abstract: This study focuses on developing a cost-effective Fe2O3 catalyst from oilfield iron waste to create a floating heterogeneous photo-Fenton system with anatase/rutile(A/R) TiO2 heterophase photocatalyst (cork-Fe2O3@A1-xRx-TiO2) for treating textile pollution in sunlight. Through controlling sol-gel (SG) microwave heating technique, the A/R ratio of A1-xRx-TiO2 crystal is tuned (A/R ratio = 1.13 and Eg = 3.02 eV) to improve adsorption-photocatalytic removal of anionic/cationic dyes with an apparent kinetic rate (kapp) of 0.0074 min-1 under UV-visible irradiation. The developed cork-Fe2O3@A53.1R46.8-TiO2 floated system also outperforms the classical photo-Fenton with Fe/H2O2 benchmark, showing a 2-fold enhancement in textile dye degradation (kapp = 0.216 min-1 and space-time yield (SY) of 1.7*10-4 mol/E.g at pH 5.65) with high stability over four reuse cycles. The formation of Fe2O3@A53.1R46.8-TiO2 Type-II heterojunction is confirmed by optical and electrochemical analyses, allowing the acceleration of direct electron transfer mechanism and oxidative degradation of dyes during photo-Fenton reaction. As a case study, the cork-Fe2O3@A53.1R46.8-TiO2 system demonstrates a high capability for efficient mineralization of textile pollution in a real effluent, achieving 82 ± 2% reduction in the total organic contents at an operational cost of 2.61 $/kg.m3 in sunlight. Thus, this research addresses challenges in conventional Fenton chemistry, iron waste recycling, and catalyst retention, offering new insights for sustainable treatment of textile effluents and environmental protection.[Abstract] [Full Text] [Related] [New Search]