These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pancreatic islets synthesize phospholipids de novo from glucose via acyl-dihydroxyacetone phosphate.
    Author: Dunlop ME, Larkins RG.
    Journal: Biochem Biophys Res Commun; 1985 Oct 30; 132(2):467-73. PubMed ID: 3904751.
    Abstract:
    There is considerable evidence that an increased turnover of phosphoinositides and phosphatidic acid accompanies stimulus-induced insulin release. As glucose metabolism via glycolysis produces precursors for phospholipid synthesis, the time course of incorporation of [U14C] labelled glucose was measured to determine the pathways of triose carbon incorporation into phospholipids in the islet. Cultured islets were stimulated with glucose 2.7 or 33 mM. The labelled phospholipids present after stimulation were acyldihydroxyacetone phosphate, lysophosphatidic acid, phosphatidic acid and phosphatidylinositol. Acyl-dihydroxyacetone phosphate rose promptly within 1 minute of raising the glucose concentration and was the primary acylated triose labelled during the first 15 minutes. It was possible to show in vitro conversion of [U14C] glucose-derived acyl-dihydroxyacetone phosphate to lysophosphatidic acid and phosphatidic acid in the presence of NADPH (100 microM), indicating the presence in the islet of acyl-dihydroxyacetone phosphate: NADP oxidoreductase and acyl CoA:1 acylglycerol-3-phosphate acyl transferase, respectively. This study suggests that de novo synthesis of phosphatidic acid provides a link between glucose metabolism and the release of insulin.
    [Abstract] [Full Text] [Related] [New Search]