These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual-recognition "turn-off-on" fluorescent Biosensor triphenylamine-based continuous detection of copper ion and glyphosate applicated in environment and living system.
    Author: Liu YT, Zhang QQ, Yao SY, Cui HW, Zou YL, Zhao LX.
    Journal: J Hazard Mater; 2024 Sep 15; 477():135216. PubMed ID: 39047560.
    Abstract:
    Heavy metal Cu2+ emitted in industry and residues of glyphosate pesticides are pervasive in ecosystems, accumulated in water bodies and organisms' overtime, constituting hazard to human and ecological balance. The development of rapid, highly selective, reversibility and sensitive biosensor in vivo detection for Cu2+ and glyphosate was imminent. A novel dual-recognition fluorescence biosensor MPH was successfully synthesized based on triphenylamine, which demonstrated remarkable ratiometric fluorescence quenching toward Cu2+, while MPH-Cu2+ (1:1) ensemble exhibited ratiometric fluorescence restoration for glyphosate, both with observable color changes in daylight and UV lamp. The biosensor exhibited rapid, outstanding selectivity, anti-interference, and multiple cycles reversibility through "turn-off-on" fluorescence towards Cu2+ and glyphosate, respectively. Surprisingly, the clearly binding mechanisms of MPH to Cu2+ and MPH-Cu2+ ensemble to glyphosate were determined, respectively, based on the Job's plot, FT-IR, ESI-HRMS, 1H NMR titration and theoretical calculations of dynamics and thermodynamics. In addition, biosensor MPH demonstrated successful detection of Cu2+ and glyphosate across diverse environmental samples including tap water, extraction solutions of traditional Chinese medicine honeysuckle and soil samples. In the meantime, fluorescence imaging of Cu2+ and glyphosate at both micro and macro scales in various living organisms, such as rice roots, MCF-7 cells, zebrafish, and mice, were successfully achieved. Overall, this work was expected to become a promising and versatile fluorescence biosensor for rapid and reversible detection of Cu2+ and glyphosate both in vitro and vivo.
    [Abstract] [Full Text] [Related] [New Search]