These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PrG protects postovulatory oocytes aging in mice through the putrescine pathway. Author: Ma R, Zhao X, Zhao J, Yi Y, Jian S, Ma X, Su Z. Journal: Biochem Biophys Res Commun; 2024 Nov 12; 733():150350. PubMed ID: 39053107. Abstract: Postovulatory aging of oocytes involves a series of deleterious molecular and cellular changes, which adversely affect oocyte maturation, fertilization, and early embryonic development. Petunidin-3-O-(6-O-pcoumaroyl)-rutinoside-5-O-glucoside (PrG), the main active ingredient of anthocyanin, exerts antioxidant effects. This study investigated whether PrG supplementation could delay postovulatory oocyte aging by alleviating oxidative stress. Our results showed that PrG supplementation decreased the number of abnormal morphology oocytes and improved the oxidative stress of aged oocytes by facilitating the reduction of the reactive oxygen species, the increase in glutathione content, and the recovery of expression of antioxidant-related gene expression. In addition, PrG treatment recovered mitochondrial dysfunction, including mitochondrial distribution, mitochondrial membrane potential and adenosine triphosphate in aged oocytes. PrG-treated oocytes returned to normal levels of cytoplasmic and mitochondrial calcium. Notably, PrG inhibited early apoptosis in aged oocytes. RNA-seq and qRT-PCR results revealed that PrG ameliorated oxidative stress injury in postovulatory aging oocytes of mice via the putrescine pathway. In conclusion, in vitro PrG supplementation is a potential therapy for delaying postovulatory oocyte aging.[Abstract] [Full Text] [Related] [New Search]