These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth inhibition of Escherichia coli by E colicin plasmids. Author: Brunner DP, Allard LR, Bott MA, Rao YS. Journal: J Gen Microbiol; 1985 Sep; 131(9):2377-85. PubMed ID: 3906043. Abstract: Plasmids were isolated from E colicinogenic strains and transformed into prototrophic Escherichia coli K 12 strain DB364. Screening of E colicinogenic transformants for growth on defined medium revealed an apparent amino acid auxotrophy mediated by E4 and, to a lesser extent, E7 colicin plasmids. The auxotrophy was further investigated in E4 colicinogenic strains. From such auxotrophic transformants, denoted Pmi+ (plasmid-mediated inhibition of growth), Pmi- variants were obtained at a frequency of 3 X 10(-4) per bacterium. Plasmid loss was not detected among Pmi- clones. Isolation of E4 colicin plasmids from Pmi- clones and retransformation of strain DB364 with these plasmids showed that 40% of the plasmids were unable to inhibit growth of DB364 and were inferred to have alterations in an E4 colicin plasmid gene termed pmi. All such plasmids were indistinguishable from native E4 colicin plasmids, with respect to colicin immunity, colicin production and excretion, and sensitivity to lysis by mitomycin C. Experiments examining the nutritional basis of the plasmid-mediated auxotrophy indicated that at least seven amino acids, isoleucine, leucine, valine, arginine, methionine, serine and glycine, were involved in the auxotrophy. However, supplementation with only these seven amino acids did not completely restore growth. Assays of the activities of enzymes involved in amino acid biosynthesis in colicinogenic and non-colicinogenic strains under repressing and derepressing growth conditions suggested that E4 colicin plasmids did not repress synthesis of the implicated amino acids.[Abstract] [Full Text] [Related] [New Search]