These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cascade Electrocatalytic Nitrate Reduction Reaching 100% Nitrate-N to Ammonia-N Conversion over Cu2O@CoO Yolk-Shell Nanocubes.
    Author: Huang W, Luo W, Liu J, Jia BE, Lee C, Dong J, Yang L, Liu B, Yan Q.
    Journal: ACS Nano; 2024 Jul 28; ():. PubMed ID: 39069739.
    Abstract:
    The electroreduction of nitrate to ammonia via a selective eight-electron transfer nitrate reduction reaction offers a promising, low energy consumption, pollution-free, green NH3 synthesis strategy alternative to the Haber-Bosch method. However, it remains a great challenge to achieve high NH4+ selectivity and complete conversion from NO3--N to NH4+-N. Herein, we report ingredients adjustable Cu2O@CoO yolk-shell nanocubes featured with tunable inner void spaces and diverse activity centers, favoring the rapid cascade conversion of NO3- into NO2- on Cu2O and NO2- into NH4+ on CoO. Cu2O@CoO yolk-shell nanocubes exhibit super NH4+ Faradaic efficiencies (>99%) over a wide potential window (-0.2 V to -0.9 V versus RHE) with a considerable NH4+ yield rate of 15.27 mg h-1 cm-2 and fantastic cycling stability and long-term chronoamperometric durability. Cu2O@CoO yolk-shell nanocubes exhibited glorious NO3--N to NH4+-N conversion efficiency in both dilute (500 ppm) and highly concentrated (0.1 and 1 M) NO3- electrolytes, respectively. The nitrate electrolysis membrane electrode assembly system equipped with Cu2O@CoO yolk-shell nanocubes delivers over 99.8% NH4+ Faradaic efficiency at cell voltages of 1.9-2.3 V.
    [Abstract] [Full Text] [Related] [New Search]