These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protease activation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. Author: Andrews RE, Bibilos MM, Bulla LA. Journal: Appl Environ Microbiol; 1985 Oct; 50(4):737-42. PubMed ID: 3909962. Abstract: Two isolates of Bacillus thuringiensis subsp. kurstaki were examined which produced different levels of intracellular proteases. Although the crystals from both strains had comparable toxicity, one of the strains, LB1, had a strong polypeptide band at 68,000 molecular weight in the protein from the crystal; in the other, HD251, no such band was evident. When the intracellular proteases in both strains were measured, strain HD251 produced less than 10% of the proteolytic activity found in LB1. These proteases were primarily neutral metalloproteases, although low levels of other proteases were detected. In LB1, the synthesis of protease increased as the cells began to sporulate; however, in HD251, protease activity appeared much later in the sporulation cycle. The protease activity in strain LB1 was very high when the cells were making crystal toxin, whereas in HD251 reduced proteolytic activity was present during crystal toxin synthesis. The insecticidal toxin (molecular weight, 68,000) from both strains could be prepared by cleaving the protoxin (molecular weight, 135,000) with trypsin, followed by ion-exchange chromatography. The procedure described gave quantitative recovery of toxic activity, and approximately half of the total protein was recovered. Calculations show that these results correspond to stoichiometric conversion of protoxin to insecticidal toxin. The toxicities of whole crystals, soluble crystal protein, and purified toxin from both strains were comparable.[Abstract] [Full Text] [Related] [New Search]