These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition. Author: Verma N, Singh D, Mittal L, Banerjee G, Noryang S, Sinha AK. Journal: Plant Cell; 2024 Oct 03; 36(10):4535-4556. PubMed ID: 39102893. Abstract: Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.[Abstract] [Full Text] [Related] [New Search]