These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ferroelectrically controlled electromagnetic and transport properties of VN2H2/Al2O3 van der Waals multiferroic heterostructures.
    Author: Sun C, Ye H, Zhu Y, Chen L, Bai D, Wang J.
    Journal: Nanoscale; 2024 Aug 22; 16(33):15746-15757. PubMed ID: 39105441.
    Abstract:
    The vertical integration of a ferromagnetic monolayer and a ferroelectric monolayer into van der Waals heterostructures offers a promising route to achieve two-dimensional multiferroic semiconductors owing to the lack of intrinsic single-phase multiferroic materials in nature. In this study, we propose a VN2H2/Al2O3 van der Waals magnetoelectric multiferroic heterostructure and investigate its electronic, magnetic, and transport properties using density functional theory combined with the Boltzmann transport theory. The VN2H2 monolayer is a room-temperature ferromagnetic semiconductor with a band gap of 0.24 eV and a Curie temperature of 411 K, while the Al2O3 monolayer is a ferroelectric semiconductor with a polarization value of 0.11 C m-2. In the VN2H2/Al2O3 van der Waals heterostructures, the conversion between the metal and the semiconductor can be controlled by altering the polarization of the Al2O3 layer. The VN2H2/Al2O3 van der Waals heterostructure retains room-temperature ferromagnetism, and the reverse of polarization is accompanied with a change in the direction of the easy magnetization axis. In addition, electrostatic doping can significantly improve the conductivity of the downward polarization state and transform the upward polarization state from a metal to a half-metal, achieving 100% spin polarization. Our results thus pave the way for achieving highly tunable electromagnetic and transport properties in van der Waals magnetoelectric heterostructures, which have potential applications in next-generation low-power logic and memory devices.
    [Abstract] [Full Text] [Related] [New Search]