These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Validation of Noninvasive Detection of Hyperkalemia by Artificial Intelligence-Enhanced Electrocardiography in High Acuity Settings.
    Author: Harmon DM, Liu K, Dugan J, Jentzer JC, Attia ZI, Friedman PA, Dillon JJ.
    Journal: Clin J Am Soc Nephrol; 2024 Aug 01; 19(8):952-958. PubMed ID: 39116276.
    Abstract:
    BACKGROUND: Artificial intelligence (AI) electrocardiogram (ECG) analysis can enable detection of hyperkalemia. In this validation, we assessed the algorithm's performance in two high acuity settings. METHODS: An emergency department (ED) cohort (February to August 2021) and a mixed intensive care unit (ICU) cohort (August 2017 to February 2018) were identified and analyzed separately. For each group, pairs of laboratory-collected potassium and 12 lead ECGs obtained within 4 hours of each other were identified. The previously developed AI ECG algorithm was subsequently applied to leads 1 and 2 of the 12 lead ECGs to screen for hyperkalemia (potassium >6.0 mEq/L). RESULTS: The ED cohort (N=40,128) had a mean age of 60 years, 48% were male, and 1% (N=351) had hyperkalemia. The area under the curve (AUC) of the AI-enhanced ECG (AI-ECG) to detect hyperkalemia was 0.88, with sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and positive likelihood ratio (LR+) of 80%, 80%, 3%, 99.8%, and 4.0, respectively, in the ED cohort. Low-eGFR (<30 ml/min) subanalysis yielded AUC, sensitivity, specificity, PPV, NPV, and LR+ of 0.83, 86%, 60%, 15%, 98%, and 2.2, respectively, in the ED cohort. The ICU cohort (N=2636) had a mean age of 65 years, 60% were male, and 3% (N=87) had hyperkalemia. The AUC for the AI-ECG was 0.88 and yielded sensitivity, specificity, PPV, NPV, and LR+ of 82%, 82%, 14%, 99%, and 4.6, respectively in the ICU cohort. Low-eGFR subanalysis yielded AUC, sensitivity, specificity, PPV, NPV, and LR+ of 0.85, 88%, 67%, 29%, 97%, and 2.7, respectively in the ICU cohort. CONCLUSIONS: The AI-ECG algorithm demonstrated a high NPV, suggesting that it is useful for ruling out hyperkalemia, but a low PPV, suggesting that it is insufficient for treating hyperkalemia.
    [Abstract] [Full Text] [Related] [New Search]