These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic wet air oxidation removal of tetracycline by La2O3 immobilized on recycled polyethylene terephthalate using the response surface methodology.
    Author: Evazinejad-Galangashi R, Mohagheghian A, Shirzad-Siboni M.
    Journal: J Environ Manage; 2024 Sep; 368():122043. PubMed ID: 39126841.
    Abstract:
    This study investigated the removal of tetracycline from the aqueous solutions by lanthanum oxide nanoparticles covered with polyethylene terephthalate (PET) using a low-cost and facile co-precipitation method, via catalytic wet air oxidation process (CWAO) by response surface methodology (RSM). XRD, FTIR, SEM, and EDX-map techniques have been employed to investigate the crystal structure, functional groups on the surface, morphologic characteristics, and elemental composition, respectively. Under optimum conditions (pH= 9, initial TC concentration= 20 mg L-1, nanocomposite dosage= 1.5 g L-1, pressure= 4 bar, temperature= 70 °C, and time= 90 min), TC removal efficiency by La2O3-PET was achieved at about 99.9%. The environmental parameters were assessed to determine tetracycline catalytic wet air oxidation degradation rate, which included cleaning gases, hydrogen peroxide, type of organic compounds, anions, radical scavenger and reusability. The ANOVA results indicated that the polynomial model proves that the model is entirely meaningful (F-value> 0.001 and P-value< 0.0001) and has high coefficient values of adjusted R2 (0.7404) and predicted R2 (0.5940). The findings indicated that the variables of time, pH, temperature, dosage, and TC concentration have the greatest role in removing tetracycline, respectively. However, pressure as a factor does not have a considerable influence on the performance of the system. In general, due to the presence of the role of additional anionics, the effectiveness of this method for removing tetracycline from drinking water was 82.76%. The catalyst indicated pleasing stability and recycling power during eight testing cycles. Further, the estimated electrical energy per order consumption (EEO) for the CWAO/La2O3-PET system was calculated as 5.31 kWh m-3 with an operational cost (OC) utilization of 1.78 USD kg-1 and it has been shown that this process is feasible and economically comparable to other CWAO processes. The breakdown intermediate products of tetracycline in the CWAO were examined using gas chromatography/mass spectrometry (GC-MS) analysis. The toxicity analyses for the removal of TC were carried out using Daphnia magna and the CWAO process achieved a remarkable decrease in the presence of La2O3-PET nanocomposite (LC50 and toxicity unit (TU) 48 h equal to 0.634 and 157.72 vol percent).
    [Abstract] [Full Text] [Related] [New Search]