These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Self-powered sensing platform for monitoring uric acid in sweat using cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode with excellent supercapacitor and sensing behavior. Author: Ruiyi L, Mengyu W, Xinyi Z, Zaijun L, Xiaohao L. Journal: Mikrochim Acta; 2024 Aug 11; 191(9):530. PubMed ID: 39127988. Abstract: The synthesis of cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode (Co-GQD-Ti3C2TX) is reported via self-assembly of Ti3C2TX nanosheets induced by protonated arginine-functionalized graphene quantum dot and subsequent reduction of cobalt (III). The resulting Co-GQD-Ti3C2TX shows good monolithic architecture, mechanical property, dispersibility and conductivity. The structure achieves excellent supercapacitor and sensing behavior. The self-charging supercapacitor produced by printing viscous Co-GQD-Ti3C2TX hydrogel on the back of flexible solar cell surface provides high specific capacitance (296 F g-1 at 1 A g-1), high-rate capacity (153 F g-1 at 20 A g-1), capacity retention (98.1% over 10,000-cycle) and energy density (29.6 W h kg-1 at 299.9 W kg-1). The electrochemical chip produced by printing Co-GQD-Ti3C2TX hydrogel on paper exhibits sensitive electrochemical response towards uric acid. The increase of uric acid between 0.01 and 800 μM causes a linear increase in differential pulse voltammetry signal with a detection limit of 0.0032 μM. The self-powered sensing platform integrating self-charging supercapacitor, electrochemical chip and micro electrochemical workstation was contentedly applied to monitoring uric acid in sweats and shows one broad application prospect in wearable electronic health monitoring device.[Abstract] [Full Text] [Related] [New Search]