These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of environmental concentrations of sulfamethoxazole on Skeletonema costatum and Phaeodactylum tricornutum: Insights into growth, oxidative stress, biochemical components, ultrastructure, and transcriptome. Author: Feng P, Wu J, Cui H, Huang X, Wang C, Wang C, Li X, Duan W. Journal: Ecotoxicol Environ Saf; 2024 Sep 15; 283():116851. PubMed ID: 39128452. Abstract: This study aimed to assess the ecological risks posed by sulfamethoxazole (SMX) at environmentally relevant concentrations. Specifically, its effects on the growth and biochemical components (total protein, total lipid, and total carbohydrate) of two marine microalgae species, namely Skeletonema costatum (S. costatum) and Phaeodactylum tricornutum (P. tricornutum), were investigated. Our findings revealed that concentrations of SMX below 150 ng/L stimulated the growth of both microalgae. Conversely, at higher concentrations, SMX inhibited their growth while promoting the synthesis of photosynthetic pigments, total protein, total lipid, and total carbohydrate (P < 0.05). Transmission electron microscope (TEM) observations demonstrated significant alterations in the ultrastructure of algal cells exposed to SMX, including nuclear marginalization, increased chloroplast volume, and heightened vacuolation. In addition, when SMX was lower than 250 ng/L, there was no oxidative damage in two microalgae cells. However, when SMX was higher than 250 ng/L, the antioxidant defense system of algal cells was activated to varying degrees, and the level of malondialdehyde (MDA) increased, indicating that algae cells were damaged by oxidation. From the molecular level, environmental concentration of SMX can induce microalgae cells to produce more energy substances, but there are almost no other adverse effects, indicating that the low level of SMX at the actual exposure level was unlikely to threaten P. tricornutum, but a higher concentration can significantly reduce its genetic products, which can affect the changes of its cell structure and damage P. tricornutum to some extent. Therefore, environmental concentration of SMX still has certain potential risks to microalgae. These outcomes improved current understanding of the potential ecological risks associated with SMX in marine environments.[Abstract] [Full Text] [Related] [New Search]