These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microplastic-contamination can reshape plant community by affecting soil properties.
    Author: He M, Yao W, Meng Z, Liu J, Yan W, Meng W.
    Journal: Ecotoxicol Environ Saf; 2024 Sep 15; 283():116844. PubMed ID: 39128455.
    Abstract:
    Microplastics, as emerging contaminants, pose a serious threat to terrestrial ecosystems, yet their impact on plant communities remains largely unexplored. This study utilized the soil seed bank to establish naturally germinated plant communities and investigated the effects of polyethylene (PE) and polypropylene (PP) on community characteristics. Additionally, the study aimed to elucidate the mechanisms by which variations in soil properties influenced plant community. The results indicated that microplastics led to a significant increase in soil available potassium (AK), likely due to alterations in soil microorganism proliferation. Furthermore, microplastics caused a decrease in soil salinity, total phosphorus (TP), and ammonium nitrogen (AN). Additionally, plant community composition shifted, resulting in reduced stability and niche breadth of dominant species. Microplastics also impacted niche overlap and interspecific associations among dominant species, possibly due to the reduced accessibility of resources for dominant species. Salinity, AK, and TP were identified as major drivers of changes in niche breadth, niche overlap, and community stability, with TP exerting the strongest impact on plant community composition. These findings provide valuable insights for the restoration of plant communities in coastal saline-alkali wetland contaminated by microplastics.
    [Abstract] [Full Text] [Related] [New Search]