These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physicochemical characterization of novel okra mucilage/hyaluronic acid-based oral disintegrating films for functional food applications.
    Author: Khatreja K, Santhiya D.
    Journal: Int J Biol Macromol; 2024 Oct; 278(Pt 1):134633. PubMed ID: 39128761.
    Abstract:
    Oral disintegrating films (ODFs) offer a patient-friendly approach with enhanced convenience and rapid onset of action over various health benefits. ODFs are fabricated for geriatric, pediatric, and individuals facing swallowing challenges. The present work aims to fabricate and characterize ODFs mainly composed of okra mucilage (OM), hyaluronic acid (HA), vitamin-C-loaded bioactive glass nanoparticles (VBG NPs), and clove essential oil. A bio-inspired method was employed to synthesize VBG NPs using fructose template. The nutrient analysis of OM depicted that it is a rich source of protein, carbohydrates, magnesium, and flavonoids (quercetin), accounting for its antioxidant activity. The physicochemical characteristics of the ODFs studied using contact angle measurement, surface pH, opacity, and in vitro disintegration time revealed that ODFs disintegrated rapidly in simulated saliva. The neutral surface pH of ODFs indicates their non-irritant behaviour to the oral mucosa. VBG NPs and essential oil (EO) addition enhance the thermal and mechanical properties. Further, EO infusion in the film matrix resulted in the porous and antibacterial nature of the functional film as revealed by FE-SEM micrographs and antibacterial disk diffusion assay respectively. The obtained novel nutrient-rich ODF is hemocompatible with a hemolysis rate (HR%) <5 % and suitable for functional food applications.
    [Abstract] [Full Text] [Related] [New Search]