These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mild Cold Stress at Ambient Temperature Elevates Muscle Calcium Cycling and Exercise Adaptations in Obese Female Mice.
    Author: Raun SH, Braun JL, Karavaeva I, Henriquez-Olguín C, Ali MS, Møller LLV, Gerhart-Hines Z, Fajardo VA, Richter EA, Sylow L.
    Journal: Endocrinology; 2024 Aug 27; 165(10):. PubMed ID: 39136248.
    Abstract:
    CONTEXT: Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve model translation to humans. However, the impact of housing temperature on the ability of wheel running exercise training to rescue the detrimental effect of diet-induced obese mice is currently not fully understood. OBJECTIVE: To investigate how housing temperature affects muscle metabolism in obese mice with regard to calcium handling and exercise training (ET) adaptations in skeletal muscle, and benefits of ET on adiposity and glucometabolic parameters. METHODS: Lean or obese female mice were housed at standard ambient temperature (22 °C) or thermoneutrality (30 °C) with/without access to running wheels. The metabolic phenotype was investigated using glucose tolerance tests, indirect calorimetry, and body composition. Molecular muscle adaptations were measured using immunoblotting, qPCR, and spectrophotometric/fluorescent assays. RESULTS: Obese female mice housed at 22 °C showed lower adiposity, lower circulating insulin levels, improved glucose tolerance, and elevated basal metabolic rate compared to 30 °C housing. Mice exposed to voluntary wheel running exhibited a larger fat loss and higher metabolic rate at 22 °C housing compared to thermoneutrality. In obese female mice, glucose tolerance improved after ET independent of housing temperature. Independent of diet and training, 22 °C housing increased skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity. Additionally, housing at 22 °C elevated the induction of training-responsive muscle proteins in obese mice. CONCLUSION: Our findings highlight that housing temperature significantly influences adiposity, insulin sensitivity, muscle physiology, and exercise adaptations in diet-induced obese female mice.
    [Abstract] [Full Text] [Related] [New Search]