These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Win-win integration: A mitochondria targeted AIE photosensitizer for hypochlorite detection and type I & type II photodynamic therapy.
    Author: Ni J, Yu L, Wang Y, Yang T, Bai Y, Zheng B, Liang M, Ye X, Quan YY, Lin F, Huang ZS.
    Journal: Anal Chim Acta; 2024 Sep 01; 1320():343035. PubMed ID: 39142775.
    Abstract:
    BACKGROUND: Photodynamic therapy (PDT) is a pioneering and effective anticancer modality with low adverse effects and high selectivity. Hypochlorous acid or hypochlorite (HClO/ClO-) is a type of inflammatory cytokine. The abnormal increase of ClO- in tumor cells is related to tumor pathogenesis and may be a "friend" for the design and synthesis of responsive phototherapy agents. However, preparing responsive phototherapy agents for all-in-one noninvasive diagnosis and simultaneous in situ therapy in a complex tumor environment is highly desirable but still remains an enormously demanding task. RESULTS: An acceptor-π bridge-donor-π bridge-acceptor (A-π-D-π-A) type photosensitizer TPTPy was designed and synthesized based on the phenothiazine structure which was used as the donor moiety as well as a ClO- responsive group. TPTPy was a multifunctional mitochondria targeted aggregation-induced emission (AIE) photosensitizer which could quickly and sensitively respond to ClO- with fluorescence "turn on" performance (19-fold fluorescence enhancement) and enhanced type I reactive oxygen species (ROS) generation to effectively ablate hypoxic tumor cells. The detection limit of TPTPy to ClO- was calculated to be 185.38 nM. The well-tailored TPTPy anchoring to mitochondria and producing ROS in situ could disrupt mitochondria and promote cell apoptosis. TPTPy was able to image inflammatory cells and tumor cells through ClO- response. In vivo results revealed that TPTPy was successfully utilized for PDT in tumor bearing nude mice and exhibited excellent biological safety for major organs. SIGNIFICANCE AND NOVELTY: A win-win integration strategy was proposed to design a tumor intracellular ClO- responsive photosensitizer TPTPy capable of both type I and type II ROS production to achieve photodynamic therapy of tumor. This work sheds light on the win-win integration design by taking full advantage of the characteristics of tumor microenvironment to build up responsive photosensitizer for in situ PDT of tumor.
    [Abstract] [Full Text] [Related] [New Search]