These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: BAX and DDB2 as biomarkers for acute radiation exposure in the human blood ex vivo and non-human primate models. Author: Kanagaraj K, Phillippi MA, Ober EH, Shuryak I, Kleiman NJ, Olson J, Schaaf G, Cline JM, Turner HC. Journal: Sci Rep; 2024 Aug 20; 14(1):19345. PubMed ID: 39164366. Abstract: There are currently no available FDA-cleared biodosimetry tools for rapid and accurate assessment of absorbed radiation dose following a radiation/nuclear incident. Previously we developed a protein biomarker-based FAST-DOSE bioassay system for biodosimetry. The aim of this study was to integrate an ELISA platform with two high-performing FAST-DOSE biomarkers, BAX and DDB2, and to construct machine learning models that employ a multiparametric biomarker strategy for enhancing the accuracy of exposure classification and radiation dose prediction. The bioassay showed 97.92% and 96% accuracy in classifying samples in human and non-human primate (NHP) blood samples exposed ex vivo to 0-5 Gy X-rays, respectively up to 48 h after exposure, and an adequate correlation between reconstructed and actual dose in the human samples (R2 = 0.79, RMSE = 0.80 Gy, and MAE = 0.63 Gy) and NHP (R2 = 0.80, RMSE = 0.78 Gy, and MAE = 0.61 Gy). Biomarker measurements in vivo from four NHPs exposed to a single 2.5 Gy total body dose showed a persistent upregulation in blood samples collected on days 2 and 5 after irradiation. The data indicates that using a combined approach of targeted proteins can increase bioassay sensitivity and provide a more accurate dose prediction.[Abstract] [Full Text] [Related] [New Search]