These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epitaxy of GaSe Coupled to Graphene: From In Situ Band Engineering to Photon Sensing. Author: Bradford J, Dewes BT, Shiffa M, Cottam ND, Rahman K, Cheng TS, Novikov SV, Makarovsky O, O'Shea JN, Beton PH, Lara-Avila S, Harknett J, Greenaway MT, Patanè A. Journal: Small; 2024 Oct; 20(40):e2404809. PubMed ID: 39169700. Abstract: 2D semiconductors can drive advances in quantum science and technologies. However, they should be free of any contamination; also, the crystallographic ordering and coupling of adjacent layers and their electronic properties should be well-controlled, tunable, and scalable. Here, these challenges are addressed by a new approach, which combines molecular beam epitaxy and in situ band engineering in ultra-high vacuum of semiconducting gallium selenide (GaSe) on graphene. In situ studies by electron diffraction, scanning probe microscopy, and angle-resolved photoelectron spectroscopy reveal that atomically-thin layers of GaSe align in the layer plane with the underlying lattice of graphene. The GaSe/graphene heterostructure, referred to as 2semgraphene, features a centrosymmetric (group symmetry D3d) polymorph of GaSe, a charge dipole at the GaSe/graphene interface, and a band structure tunable by the layer thickness. The newly-developed, scalable 2semgraphene is used in optical sensors that exploit the photoactive GaSe layer and the built-in potential at its interface with the graphene channel. This proof of concept has the potential for further advances and device architectures that exploit 2semgraphene as a functional building block.[Abstract] [Full Text] [Related] [New Search]