These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arachidonic acid metabolism by murine peritoneal macrophages infected with Leishmania donovani: in vitro evidence for parasite-induced alterations in cyclooxygenase and lipoxygenase pathways.
    Author: Reiner NE, Malemud CJ.
    Journal: J Immunol; 1985 Jan; 134(1):556-63. PubMed ID: 3917283.
    Abstract:
    Leishmania donovani is an obligate intracellular protozoan that resides within mononuclear phagocytes of infected mammals. Affected human and rodent hosts commonly show abnormalities of T cell function, which may be related to altered macrophage physiology resulting from intracellular parasitism. To examine this possibility, we studied the metabolism of endogenous arachidonyl-phospholipids and [3H]-arachidonyl-phospholipids by murine peritoneal exudate macrophages infected with amastigotes of L. donovani. Our results indicated that infected cells synthesized increased amounts of both cyclooxygenase and lipoxygenase metabolites of arachidonic acid. Increased synthesis of immunoreactive prostaglandin (PG)E2 was evident as early as 1 to 4 hr after infection, was correlated with the fraction of cells infected, and was inhibited by sodium meclofenamate (0.2 and 20 microM) but not nordihydroguaiaretic acid (3 microM). As determined by thin-layer chromatography, infected cells also produced markedly increased amounts of prostaglandin F2 alpha (also inhibited by sodium meclofenamate) with insignificant increases in thromboxane B2 and the stable metabolite of prostacyclin, 6-oxo-PGF1 alpha. In contrast, stimulation of cells with opsonized zymosan resulted in significantly increased synthesis of all four eicosanoids. L. donovani infection was also found to induce marked increases in synthesis of lipoxygenase metabolites of arachidonic acid by infected cells. This was evidenced by increased amounts of [3H]-labeled material in cell extracts that co-migrated with authentic standards of 5 and 12/15-hydroxy-eicosate-traenoic acids in thin-layer chromatograms. Increased synthesis of these products was largely inhibited by both NDGA (3 microM) and sodium meclofenamate (20 and 0.2 microM). Additional evidence for augmentation of 5-lipoxygenase by Leishmania was provided by the demonstration of increased leukotriene-C4 in conditioned medium from infected cells. These results indicate that macrophages infected with L. donovani produce increased amounts of arachidonic acid metabolites with the potential for influencing cellular immune function and the inflammatory response to infection.
    [Abstract] [Full Text] [Related] [New Search]