These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TRH-induced membrane hyperpolarization in rat clonal anterior pituitary cells. Author: Ozawa S. Journal: Am J Physiol; 1985 Jan; 248(1 Pt 1):E64-9. PubMed ID: 3917614. Abstract: Thyrotropin-releasing hormone (TRH) induces biphasic membrane potential changes, a transient hyperpolarization followed by a prolonged enhancement of the generation of action potentials in the clonal GH3 pituitary cell. The nature of the TRH-induced hyperpolarization was studied in Cl--free solutions. Among various test substances, only TRH and its analogue, which stimulates the release of prolactin from the GH3 cells, were capable of inducing the transient membrane hyperpolarization. The Ca2+ ionophore A23187 also caused a transient hyperpolarization accompanied by an increase in the membrane conductance, although it failed to mimic the late facilitation of spike generation. The reversal potential of the TRH-induced hyperpolarization was identical with that induced by A23187. Reduction of the K+ concentration of the bathing medium caused a similar shift of both these reversal potentials toward a more hyperpolarized level. Injection of the Ca2+-chelator EGTA into the cell suppressed both TRH and Ca2+ ionophore-induced hyperpolarizations. These results suggest that TRH mobilizes the cellular-bound Ca, which in turn activates Ca2+-mediated K+ channels, thus causing the transient membrane hyperpolarization. The relationship between the membrane hyperpolarization and the TRH-stimulated hormone release is discussed.[Abstract] [Full Text] [Related] [New Search]