These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diffusion tensor imaging in Behcet's disease with and without neurological involvement patients: evaluation of microstructural white matter abnormality with a tract-based spatial statistical analysis.
    Author: Aslan K, Genç B, Bolat N, Incesu L.
    Journal: Br J Radiol; 2024 Oct 01; 97(1162):1645-1652. PubMed ID: 39180418.
    Abstract:
    OBJECTIVE: This study aims to assess the microstructural abnormalities in white matter (WM) among Behcet's disease (BD) patients, both with and without neurological involvement, utilising tract-based spatial statistics (TBSS) to elucidate the underlying causes of WM microstructural changes. METHODS: This prospective study comprised 43 BD patients without neurological involvement, 15 neuro-Behcet's disease (NBD) patients with normal conventional MRI, and 54 healthy controls matched for age and sex. TBSS was applied in this diffusion tensor imaging study to conduct a whole-brain voxel-wise analysis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of WM. RESULTS: Compared to the control group, BD patients exhibited decreased FA and increased MD and RD in nearly all WM tracts, along with increased AD in the left corticospinal tract (CST), left inferior longitudinal fasciculus (ILF), and left superior longitudinal fasciculus (SLF). NBD patients also showed a widespread decrease in FA and increased MD and RD, similar to BD patients without neurological involvement. Additionally, NBD patients had increased AD in the left CST, left ILF, left SLF, left inferior fronto-occipital fasciculus (IFOF), and right CST. Compared to BD patients without neurological involvement, NBD patients exhibited a greater reduction in FA and an increase in MD and RD in WM tracts, with no significant differences in AD. CONCLUSION: These results suggest that the main mechanism of microstructural changes in the WM of BD patients may be related to impaired fibre integrity, demyelination, and decreased myelin sheath integrity. ADVANCES IN KNOWLEDGE: This study demonstrated BD patients without neurological involvement and NBD patients a decrease in FA and an increase in MD and RD were observed in larger areas of major WM tracts, while an increase in AD values was observed in fewer tracts. Our findings may be useful in understanding the pathophysiology underlying subclinical parenchymal involvement and neurological dysfunction in BD patients and the management of BD patients.
    [Abstract] [Full Text] [Related] [New Search]