These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. Author: Abdian N, Soltani Zangbar H, Etminanfar M, Hamishehkar H. Journal: Int J Biol Macromol; 2024 Oct; 278(Pt 4):135014. PubMed ID: 39181354. Abstract: Biocompatible scaffolds with high mechanical strengths that contain biodegradable components could boost bone regeneration compared with nondegradable bone repair materials. In this study, porous chitosan (CS)/hydroxyapatite (HA) scaffolds containing mesoporous SiO2-HA particles were fabricated through the freeze-drying process. According to field emission scanning electron microscopy (FESEM) results, combining mesoporous SiO2-HA particles in CS/HA scaffolds led to a uniform porous structure. It decreased pore sizes from 320 ± 1.1 μm to 145 ± 1.4 μm. Moreover, the compressive strength value of this scaffold was 25 ± 1.2 MPa. The in-vitro approaches exhibited good sarcoma osteogenic cell line (SAOS-2) adhesion, spreading, and proliferation, indicating that the scaffolds provided a suitable environment for cell cultivation. Also, in-vivo analyses in implanted defect sites of rats proved that the CS/HA/mesoporous SiO2-HA scaffolds could promote bone regeneration via enhancing osteoconduction and meliorating the expression of osteogenesis gene to 19.31 (about 5-fold higher compared to the control group) by exposing them to the bone-like precursors. Further, this scaffold's new bone formation percentage was equal to 90 % after 21 days post-surgery. Therefore, incorporating mesoporous SiO2-HA particles into CS/HA scaffolds can suggest a new future tissue engineering and regeneration strategy.[Abstract] [Full Text] [Related] [New Search]