These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of cooking conditions on chickpea flour functionality and its protein physicochemical properties. Author: Hong S, Xiao R, Chen G, Zhu Y, Garay A, Yang J, Xu Y, Li Y. Journal: J Food Sci; 2024 Oct; 89(10):6253-6267. PubMed ID: 39183682. Abstract: Chickpea is an important food legume that usually undergoes various processing treatments to enhance nutritional value and functional properties. This study aimed to investigate the effects of different cooking conditions on physicochemical, structural, and functional properties of chickpea, especially its protein macromolecules. Kabuli chickpea seeds were processed by water cooking at different temperatures (63, 79, 88, and 96°C), followed by evaluating flour solubility, water-holding capacity (WHC), pasting property, as well as the total protein profile and fractionated protein distributions. Cooking treatments significantly decreased flour solubility (from 39.45 to 25.21 g/100 g flour) and pasting viscosity (peak and final viscosities, from 1081 to 300.5 cP and 1323 to 532 cP, respectively), while increasing WHC (from 0.862 to 1.144 g H2O/g flour) of chickpea flour (p < 0.05). These behaviors were enhanced by increasing cooking temperature. Meanwhile, cooking induced a significant change of chickpea proteins, modifying the albumin- and globulin-like fractions of chickpea protein to display glutelin-like behavior. The current study provides potential approaches for manipulating chickpea flour functionalities (e.g., solubility, viscosity, and WHC) to address the process and product challenges and favor product innovation.[Abstract] [Full Text] [Related] [New Search]