These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel pathway for biosynthesis of cholestanol with 7 alpha-hydroxylated C27-steroids as intermediates, and its importance for the accumulation of cholestanol in cerebrotendinous xanthomatosis.
    Author: Skrede S, Björkhem I, Buchmann MS, Hopen G, Fausa O.
    Journal: J Clin Invest; 1985 Feb; 75(2):448-55. PubMed ID: 3919058.
    Abstract:
    A mixture of 7 alpha-3H- and 4-14C-labeled cholesterol was administered intravenously to rats. Cholestanol with 20-30% lower ratio between 3H and 14C than in cholesterol could be isolated from different organs. In a healthy human control, cholestanol isolated from feces had a 3H/14C ratio which was 28% lower than in administered cholesterol. Cholesterol and coprostanol reisolated in these experiments had the same ratio between 3H and 14C as in the precursor. A previously unknown pathway for formation of cholestanol, involving 7 alpha-hydroxylated intermediates, may explain these results. Under normal conditions, this pathway is responsible for at most 30% of the cholestanol synthesized from cholesterol. Intravenous administration of the 7 alpha-3H- and 4-14C-labeled cholesterol to a patient with cerebrotendinous xanthomatosis (CTX) resulted in formation of cholestanol which had 70-75% lower 3H/14C ratio. It is concluded that the novel pathway involving 7 alpha-hydroxylated intermediates is accelerated in patients with CTX. This acceleration may contribute essentially to the accumulation of cholestanol, which is a predominant feature of this disease. 7 alpha-Hydroxycholesterol and 7 alpha-hydroxy-4-cholesten-3-one might be intermediates in the novel pathway to cholestanol. After intravenous administration of 7 beta-3H-labeled 7 alpha-hydroxycholesterol in a patient with CTX, significant amounts of 3H were incorporated into plasma and fecal cholestanol. Only small amounts of 7 alpha-hydroxycholesterol and 7 alpha-hydroxy-4-cholesten-3-one are excreted into the intestine, and we therefore conclude that the 7 alpha-dehydroxylation step mainly occurs in the liver. In CTX, the synthesis of cholestanol may be accelerated because the concentrations of 7 alpha-hydroxylated bile acid intermediates in the liver are increased. A possible mechanism for the conversion of a minor fraction of 7 alpha-hydroxycholesterol into cholestanol is suggested.
    [Abstract] [Full Text] [Related] [New Search]