These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: "Photo-Thermo-Electric" Dental Implant for Anti-Infection and Enhanced Osteoimmunomodulation.
    Author: Chen B, Wang W, Hu M, Liang Y, Wang N, Li C, Li Y.
    Journal: ACS Nano; 2024 Sep 10; 18(36):24968-24983. PubMed ID: 39192736.
    Abstract:
    The dental implant market has experienced explosive growth, owing to the widespread acceptance of implants as the core of oral rehabilitation. Clinically, achieving simultaneous anti-infective effects and rapid osseointegration is a crucial but challenging task for implants. The demand for implants with long-term broad-spectrum antibacterial and immune-osteogenic properties is growing. Existing methods are limited by a lack of safety, efficiency, short-lasting anti-infective ability, and inadequate consideration of the immunomodulatory effects on osteogenesis. Herein, a ZnO/black TiO2-x heterojunction surface structure was designed as a near-infrared (NIR) light-responsive nanofilm immobilized on a titanium (Ti) implant surface. This nanofilm introduces abundant oxygen vacancies and heterojunctions, which enhance the photothermal and photoelectric abilities of Ti implants under NIR illumination by narrowing the band gap and improving interfacial charge transfer. The "photo-thermo-electric" implant exhibits excellent broad-spectrum antibacterial efficacy against three dental pathogenic bacteria (Porphyromonas gingivalis, Fusobacterium nucleatum, and Staphylococcus aureus, >99.4%) by destroying the bacterial membrane and increasing the production of intracellular reactive oxygen species. Additionally, the implant can effectively eliminate mature multispecies biofilms and kill bacteria inside the biofilms under NIR irradiation. Meanwhile, this implant can also induce the pro-regenerative transformation of macrophages and promote osteoblast proliferation and differentiation. Moreover, in vivo results confirmed the superior antibacterial and osteoimmunomodulatory properties of this dental implant. RNA sequencing revealed that the underlying osteogenic mechanisms involve activation of the Wnt/β-catenin signaling pathway and bone development. Overall, this versatile "photo-thermo-electric" platform endows implants with anti-infection and bone integration performance simultaneously, which holds great potential for dental implants.
    [Abstract] [Full Text] [Related] [New Search]