These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Moisture Sorption Isotherms of Polydextrose and Its Gelling Efficiency in Inhibiting the Retrogradation of Rice Starch.
    Author: Liu C, Li X, Song H, Li X.
    Journal: Gels; 2024 Aug 12; 10(8):. PubMed ID: 39195058.
    Abstract:
    As an anti-staling agent in bread, the desorption isotherm of polydextrose has not been studied due to a very long equilibrium time. The adsorption and desorption isotherms of five Chinese polydextrose products were measured in the range of 0.1-0.9 aw and 20-35 °C by a dynamic moisture sorption analyzer. The results show that the shape of adsorption and desorption isotherms was similar to that of amorphous lactose. In the range of 0.1-0.8 aw, the hysteresis between desorption and adsorption of polydextrose was significant. The sorption isotherms of polydextrose can be fitted by seven commonly used models, and our developed seven-parameter polynomial, the adsorption equations of generalized D'Arcy and Watt (GDW) and Ferro-Fontan, and desorption equations of polynomial and Peleg, performed well in the range of 0.1-0.9 aw. The hysteresis curves of polydextrose at four temperatures quickly decreased with aw increase at aw ˂ 0.5, andthereafter slowly decreased when aw ≥ 0.5. The polynomial fitting hysteresis curves of polydextrose were divided into three regions: ˂0.2, 0.2-0.7, and 0.71-0.9 aw. The addition of 0-10% polydextrose to rice starch decreased the surface adsorption and bulk absorption during the adsorption and desorption of rice starch, while it increased the water adsorption value at aw ≥ 0.7 due to polydextrose dissolution. DSC analysis showed that polydextrose as a gelling agent inhibited the retrogradation of rice starch, which could be used to maintain the quality of cooked rice.
    [Abstract] [Full Text] [Related] [New Search]