These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluating the Potential of Bacillus Isolates for Chlorpyrifos Degradation and Their Role in Tea Growth Promotion and Suppression of Pathogens.
    Author: Das R, Saikia K, Sarma PP, Devi R, Thakur D.
    Journal: Curr Microbiol; 2024 Aug 28; 81(10):332. PubMed ID: 39198319.
    Abstract:
    Pesticides employed for controlling domestic and agricultural pests are among the most dangerous environmental contaminants. Nevertheless, negligent usage and a lack of technical expertise have led to the contamination and pollution of various ecological niches. The extensive utilization of the organophosphate chlorpyrifos (CPs) for insect infestation control, coupled with its detrimental effects and persistence in the ecosystem, has led to calls for its removal from contaminated sites. The study is mainly focused on degradation of CPs; using viz. Bacillus wiedmannii A3 and Bacillus cereus P14 isolated from tea rhizosphere soil having pesticide contamination in Sonitpur district, Assam, India. These two bacterial strains were able to degrade CPs in vitro within 3 days. Reverse-phase HPLC analysis suggested about 96% reduction of CPs concentration upon bacterial treatment. Again, in case of A3, GC-MS analysis revealed that CPs was modified to 2-hydroxy-3,5,6-trichloropyridine and chlorpyrifos-oxon, thus finally metabolized into non-toxic products. While analyzing P14, silane, dimethyl (2,2,2-trichloroethoxy) propoxy, and 3-aminobenzoic acid, N-trimethylsilyl-, trimethylsilyl ester were identified. These compounds were subsequently transformed into non-toxic products. In addition to this, they demonstrated a significant boost of plant growth-promoting traits in both absence and presence of CPs; also showed growth development in nursery scale condition. Moreover, they functioned as biocontrol agents against Phellinus lamaensis and Colletotrichum gloeosporioides, responsible for brown root rot and anthracnose in North East India tea plantations, respectively. Thus, the pesticide-tolerant Bacilli strains A3 and P14 could be used as bioremediation of contaminated sites and also as biostimulants, and biocontrols in tea crop production.
    [Abstract] [Full Text] [Related] [New Search]