These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pitfalls When Determining HNA-1 Genotypes and Finding Novel Alleles. Author: Kløve-Mogensen K, Browne T, Haunstrup TM, Steffensen R. Journal: Int J Mol Sci; 2024 Aug 22; 25(16):. PubMed ID: 39201813. Abstract: Genetic variation in the FCGR3B gene is responsible for different variants of human neutrophil antigen 1 (HNA-1). Laboratory techniques currently utilized for routine HNA-1 genotyping, predominantly PCR-sequence-specific primer (PCR-SSP) and PCR-sequence-based typing (PCR-SBT), lack specificity for FCGR3B. This study compares the capabilities and limitations of existing technologies including an in-house TaqMan PCR, a commercial PCR-SSP test, PCR-SBT and multiplex ligation-dependent probe amplification (MLPA) with those of a long-read nanopore sequencing assay. Testing was performed with both related and unrelated Danish samples with different copy numbers and/or rare alleles. Long-read nanopore sequencing was validated by blind testing of ten English samples. The results showed that FCGR3B copy numbers correlate with a dose-dependent distribution of alleles that complicates genotyping by TaqMan PCR, PCR-SSP and PCR-SBT, due to co-amplification of the homologous FCGR3A gene. MLPA can correctly quantify the dose-dependent distribution but not detect novel variants. Long-read nanopore sequencing showed high specificity for FCGR3B and was able to detect dosage-dependent distribution, and rare and novel variants that were previously not described. Current HNA-1 genotyping methods cannot produce unambiguous allele-level results, whereas long-read nanopore sequencing has shown the potential to resolve observed ambiguities, identify new HNA-1 variants and allow definitive allele assignment.[Abstract] [Full Text] [Related] [New Search]