These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced Performance of a Self-Powered Au/WSe2/Ta2NiS5/Au Heterojunction by the Interfacial Pyro-phototronic Effect. Author: Wang D, Ling S, Hou P. Journal: ACS Appl Mater Interfaces; 2024 Sep 11; 16(36):48576-48584. PubMed ID: 39207265. Abstract: The growing need for wearable electronics and self-powered electronic devices has driven the successful development of self-powered two-dimensional (2D) photodetectors using the photovoltaic effect of Schottky and p-n junctions. However, there is an urgent need to develop multifunctional photodetectors capable of harvesting energy from different sources to overcome their limitations in efficiency and cost. While the pyro-phototronic effect has been shown to effectively influence optoelectronic processes in heterojunctions, the number of reported two-dimensional heterojunctions exhibiting interfacial pyroelectricity is still limited, and the responsivity and detectivity based on such heterojunctions tend to be low. In this study, a photodetector based on an Au/WSe2/Ta2NiS5/Au heterojunction was designed and fabricated. By harnessing the interfacial pyro-phototronic effect arising from the built-in electric fields at the Au/WSe2 Schottky junction and WSe2/Ta2NiS5 heterojunction, the photodetector exhibits a broadband response range of 405-1064 nm, with approximately 12 times enhancement in output current compared to solely relying on the photovoltaic effect. Under 660 nm light irradiation, the self-powered photodetector exhibits a responsivity of 121 mA/W, an external quantum efficiency of 22.64%, and a specific detectivity of 2 × 1012 Jones. Notably, its pyroelectric coefficient exceeds 8 × 103 μC·m-2·K-1. These findings pave the way for effectively detecting weak light and temperature variation while presenting a new strategy for developing high-performance photodetectors utilizing the interfacial pyro-phototronic effect.[Abstract] [Full Text] [Related] [New Search]