These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. Role in therapeutic cystine removal?
    Author: Pisoni RL, Thoene JG, Christensen HN.
    Journal: J Biol Chem; 1985 Apr 25; 260(8):4791-8. PubMed ID: 3921538.
    Abstract:
    The discovery of a trans-stimulation property associated with lysine exodus from lysosomes of human fibroblasts has enabled us to characterize a system mediating the transport of cationic amino acids across the lysosomal membrane of human fibroblasts. The cationic amino acids arginine, lysine, ornithine, diaminobutyrate, histidine, 2-aminoethylcysteine, and the mixed disulfide of cysteine and cysteamine all caused trans-stimulation of the exodus of radiolabeled lysine from the lysosomal fraction of human fibroblasts at pH 6.5. In contrast, neutral and acidic amino acids did not affect the rate of lysine exodus. trans-Stimulation of lysine exodus was observed over the pH range from 5.5 to 7.6, was specific for the L-isomer of the cationic amino acid, and was intolerant to methylation of the alpha-amino group of the amino acid. The lysosomotropic amine, chloroquine, greatly retarded lysine exodus, whereas the presence of sodium ion was without effect. The specificity and lack of Na+ dependence of this lysosomal transport system is similar to that of System y+ present on the plasma membrane of human fibroblasts. In addition, we find cystine exodus from the lysosomal fraction of cystinotic human fibroblasts to be greatly retarded as compared to that of normal human fibroblasts with half-times of exodus similar to those reported for the lysosomes of cystinotic and normal human leukocytes (Gahl, W. A., Tietze, F., Bashan, N., Steinherz, R., and Schulman, J. D. (1982) J. Biol. Chem. 257, 9570-9575). In contrast, normal and cystinotic human fibroblasts did not show any differences with regard to lysine efflux or its trans-stimulation by cationic amino acids. An important mechanism by which cysteamine treatment of cystinosis allows cystine escape from lysosomes may be the ability of the mixed disulfide of cysteine and cysteamine formed by sulfhydryl-disulfide exchange to migrate by this newly discovered system mediating cationic amino acid transport.
    [Abstract] [Full Text] [Related] [New Search]